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Fire whirls due to surrounding flame sources
and the influence of the rotation speed on

the flame height
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In this paper, we use numerical simulation and laboratory experimental observation
to show that fire whirls can be generated spontaneously through the interaction
between a central flame and surrounding organized or randomly distributed flames.
The momentum of the air stream entrained by the main flame decreases as it crosses a
surrounding flame, so that the main flame rotates if surrounding flames are arranged
in such a way as to block the passage of the air stream directed towards the centre
of the main flame and to favour flows in a particular circumferential direction. An
analysis is performed to study the role of the rotation speed in the flame height. It
is found that the flame height initially decreases to a minimum owing to the inflow
boundary layer wind reducing the initial vertical velocity of gas for low rotation
speed and to entrainment enhancement reducing the rising time, and then it increases
owing to the pressure reduction at the centre of the rotating vortex and entrainment
suppression extending the rising time.

1. Introduction
The interest in studying fire whirls comes not only from their beauty as a natural

phenomenon but also from their disastrous effects (Graham (1952, 1957)). Fire whirls
are highly destructive since intense rising due to spiralling spreads burning scraps far
away to generate new fire sources. Fire whirls are also important because the resulting
circulation enhances consumption of the fuel producing a greater source of smoke
and toxic products. The swirling in a fire whirl was initially thought to be induced
by an external source of angular momentum (Emmons & Ying 1967; Satoh &
Yang 1996), by atmospheric instability or by the interplay of wind and topography
(Graham 1957). The characteristics of fire whirls have been studied experimentally and
numerically through plume flows in a rotating cylinder or by strategically arranged
surrounding solid walls (Emmons & Ying 1967; Satoh & Yang 1996; Battaglia et al.
2000a; Farouk, McGrattan & Rehm 2000), or analytically through imposition of
an inviscid vortex assumption (Battaglia, Rehm & Baum 2000b). Emmons & Ying
(1967) conducted one of the earliest studies to investigate the fire whirl phenomena
experimentally. A fire whirl was formed from a liquid-fuel pool at the centre of
a rotating cylindrical screen which imparted a controlled angular momentum to
the ambient air. Later Satoh & Yang (1996) conducted experiments on a flame
surrounded by a four-walled square enclosure with symmetric corner gaps between
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the walls, and open at the top. As the fire burns in the centre, ambient air is
continuously entrained through the gaps into the plume to produce swirling. These
two representative experimental studies have been simulated numerically by Battaglia
et al. (2000a), Farouk et al. (2000) and Meroney (2003a, b, 2004) using computational
fluid dynamics. It is commonly accepted that the formation of fire whirls requires a
source of ambient vorticity, a concentrating mechanism, and a favourable environment
for their stability and growth (Meroney 2003a). The concentrating mechanism rotates
the horizontal vorticity into the vertical direction and stretches the vortex tubes.

Experimental and numerical studies on a plume contained in a rotating cylinder
(Emmons & Ying 1967; Battaglia et al. 2000a) have shown that the flame height
varies due to the swirl motion. Emmons & Ying (1967) observed by experiment
that the plume is lengthened with whirl. The numerical results of Battaglia et al.
(2000a) indicate that the flame height first decreases with whirl to a minimum before
increasing as the whirl increases further. Chigier et al. (1970) performed experiments
that demonstrated that plume height grows with increased rotation, but then over-
rotation suppressed it.

The above studies reveal the structure (such as temperature distribution and length)
of fire whirls, showing that swirling of a flame lengthens the fire column vertically
and tightens it radially, conducive to the more rapid spread of fire sources and to the
increase of the time-averaged burning rate. To the best of the authors’ knowledge,
most previous studies of mechanisms and characteristics of fire whirls are based
on externally modifying the geometry surrounding fire plumes, such as imposing a
rotating cylinder or an external circulation. No attempt has been made to investigate
whether fire whirls can occur spontaneously in nature, without the existence of
an imposed external circulation. No theory has been developed to describe the
relationship between the rotation speed and the flame height. However, there is work
on the influence of the rotation speed on the propagation of fluid along a vortex
tube. For instance, Atobiloye & Britter (1994) carried out a simplified analysis of the
influence of vortical structures on a two-density fluid that indicates possible motion
of the light fluid into the heavy one and vice versa. The fluid velocities along the
vortex tube were found to vary as the angular speed (for a solid-body rotation) or
the vortex strength (for a free vortex) changes.

The purpose of the present study is to show, with the use of numerical computation
and experiment, that fire whirls can be generated spontaneously through the
interaction between a main flame and organized or randomly distributed surrounding
flames. This is inspired by the work of Satoh & Yang (1996) who built four solid
walls with gaps to surround the centre flame. Here the solid walls are replaced by
three or more regularly or randomly distributed flames. Furthermore, we analyse the
influence of the rotation speed on the height of the flame.

In § 2, we will first describe a basic four-flame-wall configuration for which we
find rotation through numerical simulation and laboratory experiments. Then, we use
numerical simulation to study more configurations, including regularly distributed
three-wall and six-wall models, and randomly distributed surrounding walls. We
will demonstrate that rotation of the main flame can also be induced by randomly
distributed flame sources. A criterion based on the definition of gap fraction will be
given for establishing the likelihood of a fire whirl for a given fire geometry. The
numerical tools used in this section are briefly outlined in Appendix A.

In § 3, we will study the influence of the rotation speed on the height of the rotating
flame. We will show that the flame height is related to the buoyancy force, which itself
is an increasing function of the rotation speed, to the initial vertical velocity of the
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Figure 1. A planar two-dimensional flame configuration.

flame and to the rising time. The initial vertical velocity, defined as the axial velocity
at the top of the boundary layer, is shown to be a decreasing function of the rotation
speed. And the rising time, defined as the time it takes for fuel gas to be mixed with
entrained air at the stoichiometric ratio, is shown to be a function of the rotation
speed, which decreases then increases. With these conclusions we will prove that the
flame height first decreases to a minimum and then increases when the rotation speed
increases.

The essential findings of this paper are summarized in § 4, where we also outline
some subjects that deserve further study.

2. Fire whirls due to surrounding flame sources
In this section we aim to demonstrate that surrounding flame walls can induce

rotation of the main flame if the surrounding flames are placed asymmetrically. After
arguing that the horizontal momentum of an air stream weakens while crossing a
flame wall, we give a four-flame-wall model for which we display rotation from both
numerical and experimental observations (§§ 2.1 and 2.2). We also give more realistic
configurations, including regularly distributed three-flame-and six-flame-wall models
and randomly distributed flame walls (§ 2.3). Then we study the role of the free
passag of air stream in the rotation speed (§ 2.4) to give some indication of how
flame distributions quantitatively influence rotation. Finally, we briefly discuss the
possibility of flame distribution that induces rotation (§ 2.5).

2.1. Fire whirl produced by a four-flame-wall model

Qualitatively, it is not difficult to understand why a surrounding flame weakens the
momentum of the air stream entrained by a main flame. Consider for instance a
planar two-dimensional flame configuration as displayed in figure 1, composed of a
main flame surrounded by two flame walls. We use ρ and T to denote the density
and the temperature, respectively. The subscripts a, b, and f refer to conditions in
the atmosphere, between the main flame and the surrounding flame, and inside the
main flame, respectively. The buoyancy force inside the surrounding flames induces
an upward motion; that is, inside the surrounding flames, the vertical component w

of the velocity satisfies w > 0. Consider the left-hand surrounding flame of height h.
By mass conservation we have

ṁ +

∫ h

0

ρaua dz =

∫ h

0

ρbub dz +

∫
sur

ρf w(x, h) dx (2.1)
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Fuel Molecular formula The chemical equation The stoichiometric ratio

acetone CH3COCH3 CH3COCH3 + 4O2(20air) = 3H2 + 3CO2 58 : 580= 0.100 : 1

alcohol C2H5OH C2H5OH + 3O2(15air) = 3H2 + 2CO2 46 : 435= 0.106 : 1

carbon C C + O2(5air) = CO2 12 : 145= 0.093 : 1

Table 1. The stoichiometric ratio of acetone, alcohol and carbon to air, 20air, 15air and
5air denote the equivalent quantity of air containing the required O2.

where the left-hand term ṁ represents the mass added by the combustion source and
the right-hand term

∫
sur

ρf w(x, h) dx represents the mass flow across the top of the
left-hand surrounding flame. Generally, the mass of fuel is small compared to that of
the air. Considering the case of complete reaction, we use the chemical equation to
calculate the stoichiometric ratio of three kinds of common fuels to air, as listed in
table 1. Here acetone is the fuel used by Emmons & Ying (1967) in their experiments,
alcohol is the fuel used in our experiments and carbon is the main component of
wood or other combustible materials. It is easy to see that the mass of fuel is about
one order smaller that of the air. It may be even smaller in an open fire. Therefore,
the mass added by the combustion source ṁ in equation (2.1) can be neglected. Since∫

sur
ρf w(x, h) dx > 0, we have

∫ h

0

ρbub dz <

∫ h

0

ρaua dz.

This means that the total momentum decreases while the air stream travels from a
surrounding flame.

Therefore, unconnected surrounding flame walls could induce rotation of the main
flame if they were placed in such a way as to partially block the air stream directed
towards the centre of the main flame and to favour flows in a particular circumferential
direction of the main flame. Figure 2(a) displays such a configuration. It is composed
of a main pool (pool D), placed at the centre, and four side pools. As shown in
figure 2 (b), a strong plume rises above the centre of pool D. Four side pools each
produce a flame wall. Owing to the buoyancy inside the main plume, there is a radial
movement of the surrounding air towards the centre of the plume. Part of this radially
moving air moves freely through open sections like A, while part will travel across
flame walls like section B . Since the horizontal air stream crossing a flame wall loses
part of its horizontal momentum due to the rising motion in the flame wall, the
radial inward flow momentum is strong in section A and weak across section B . This
produces a net angular momentum which should rotate the main flame.

In order to show that the centre flame rotates, we have performed a numerical
computation for the four-flame-wall model. Details of the numerical method are given
in Appendix A and its reliability is checked by comparison to published data, details
of which are given in an Appendix available with the online version of the paper.
Figure 2(c) displays time-averaged streamlines of the flow based on the numerical
computation, showing a counterclockwise rotation of the centre plume. The isosurface
of the 5 % mixture fraction is used to represent the plume. Theoretically the plume
is the surface on which the mixture fraction of fuel is zero as the fuel is completely
oxygenated by the air. However, it is impossible that the mixture fraction precisely
equals zero and a small value can be used instead, the isosurface of which denotes
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Figure 2. Basic auto-rotating fire whirl model. (a) Fuel pool layout. (b) Main trajectories
of the surrounding air entrained by the centre plume. (c) Time-averaged streamlines based
on numerical results, showing a counterclockwise rotation of the centre plume. (d ) Fire
whirl produced by numerical simulation, with A/D =0.5 and D = 2m. (e) Flame without a
surrounding flame wall.

the interface between fuel-rich and fuel-lean regions of the fire, roughly representing
the plume. The precise value is not very important. In the present work, 5 % is used
as it gives a good view. The computed plumes are displayed in figure 2(d ). The
rotation of the centre plume is obvious from the helical shape of the isosurface. The
time-averaged rotation speed of the main flame at height z/D = 0.5 is 13.2 s−1.

To show that the rotation is indeed induced by the asymmetry of the surrounding
flame walls, we have done another computation with the flame walls removed. In this
case, no rotation occurs, as can be seen from figure 2(e).

It is interesting to compare the height of the main flame with and without rotation.
The flame height is roughly defined as the top of the 5 % isosurface. The height of
the rotating plume is 6.5 m while the non-rotating plume is 5.2 m. Hence rotation
increases the height of the flame. The role of rotation in the flame height will be
further studied in § 3. Since the flow is turbulent, the flame heights are time dependent
and unsteady. An experimental fire whirl driven by a rotating cylinder (Emmons &
Ying 1967; Satoh & Yang 1996; Emmons & Ying 1967) initially precesses slowly
with a low height before finally rising to its full height. In our fire-wall models there
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(a) (b)

(c) (d )

Figure 3. Photographs of laboratory-produced flames with and without rotation. (a) An
unconfined plume. (b) A plume in the centre of unburned fuel polls. (c) A plume in the centre
of closed flame walls. (d ) A plume in the centre of four flame walls with gaps between.

is intermittency for low- and high-speed rotation. We measure the height when the
rotation is the highest for a given configuration.

2.2. Experimental observation

In order to verify the above results, we have performed experiments for the four-
flame-wall configuration. In the experiment, the centre fuel pool is a round container
with diameter of 13 cm and height of about 5 cm. Side fuel pools are rectangular
containers with dimensions of 30 cm × 3 cm × 2 cm. Though the container height
might have some influence on the flame physics and flame height, it does not affect
the qualitative properties we are interested here. All the containers were made of
stainless steel, filled with alcohol, whose heat of combustion is 3.02 × 107 J kg−1. The
side pools were organized in a similar way as in figure 2(a). The gap width is 15 cm
so that A/D ≈ 1.0. In order to avoid any undesirable disturbances and to provide
enough space for the ambient atmosphere, the experiment is performed in a closed
empty room, which is about 3 m high and with solid walls more than 1 m from the
flame pools. The ambient (room) temperature is 16 ◦C.

All the images were captured by a digital camera BenQ S40, with a total resolution
of 2304 × 1728 pixels, and cropped to the required size. The photographs for the
four-flame-wall model are displayed in figure 3. First we display three cases for which
the centre flame does not rotate:
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(i) the centre pool (flame) has no surrounding pools (flame walls), as displayed in
figure 3(a);

(ii) the side pools do not burn, as seen in figure 3(b);
(iii) there is no gap between the side pools, i.e. the side flames form a closed set,

as shown in figure 3(c). It appears that the flame height for the fully blocked case
(iii) is slightly higher than in the unblocked case. This is due not to rotation but to
the unsteadiness of the flame. Occasionally a portion of the flame tears off from the
main flame to rise to a higher altitude.

The centre flame rotates when these are four flame walls with gaps between them,
as demonstrated in figure 3(d ).

In the experiment, we also found that rotation increases the height of the flame.
The flame without rotation has a height of 30 cm, while the rotating flame reaches a
height of 60 cm.

Hence, experimental observation confirms the numerical conclusions that
autorotation occurs when surrounding flames partially block the inward air flow
and favour the passage of the air stream through the gaps, provided that this air
stream is aligned approximately in the direction of rotation. Moreover, the flame
height increases due to rotation.

2.3. Fire whirls produced by multiple or randomly distributed surrounding flames

Here we consider more configurations for which the centre flame rotates. Figure 4
displays a three-flame-wall model and a six-flame-wall model. The numerical details
for the computation of these two configurations are given in Appendix A.

For the three-flame-wall model, the centre pool is a triangle. Each side flame
is parallel to one side of the triangle. The air stream through the gaps (A)
lies in a particular circumferential direction with respect to the centre pool. In
figure 4(a) we display some representative time-averaged streamlines and the 5 %
isosurface representing the flame. It is clear that the centre flame has an anticlockwise
rotation.

For the six-flame-wall model, the centre pool is a hexagon. Each of the six side
flames is parallel to one side of the hexagon. The gaps are constructed such that the
air stream through the gaps (like A) again lies in a particular circumferential direction
with respect to the centre pool. In figure 4(b) we show time-averaged streamlines and
flame shapes. The centre flame rotates. The computation yields different rotation
speeds for the three-, four- and six-flame-wall models. In figure 4(c) we display the
time-averaged circumferential velocity at height z =1 m. We see that the greater the
numbers of flame walls, the faster the flame rotates.

In reality, the likelihood of naturally having regularly distributed flame sources as
shown in figures 2 and 4 is quite small. Flame sources are more frequently randomly
distributed in a real fire disaster. Extrapolating from the autorotation mechanism
observed for the above models, it is possible to construct an infinite number of
flame source distributions capable of sustaining/enhancing or avoiding/weakening fire
whirls. Now we consider randomly distributed flame sources surrounding a main
flame. We just display some configurations for which the surrounding flame sources
favour flows of the main flame in a particular circumferential direction and induce
rotation.

In figure 5 we display a random flame source distribution. The time-averaged
streamlines displayed in figure 5(a) show a strong rotation. The flames in figure 5(b)
show that the rotating centre flame is higher than the surrounding flame. The strong
autorotation of the central flame is mainly due to the large gaps at the upper right
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Figure 4. Two further configurations with autorotation. (a) Three-flame-wall model showing
streamlines and the computed flame. (b) Six-flame-wall model. (c) Time-averaged swirl velocity
profiles at z = 1 m for the different models.
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Figure 5. Computed results for randomly distributed flame sources. (a) Time-averaged
streamlines showing an intense rotating and upward motion. (b) View of burning plumes.
(c) Time-averaged streamlines on a horizontal plane.

corner and upper left corner of the layout (figure 5c). The air stream entering through
these corners lies in a particular circumferential and anticlockwise direction with
respect to the main flame.

To see this more clearly, we constructed other configurations. In figure 6(a), we
display an isolated flame. Without the influence of surrounding flames, it does not
rotate, as seen from the time-averaged streamlines directed to the centre of the flame.
In figure 6(b), we show a two-main-flame configuration. For the left main flame, the
lower left and upper left gaps between the surrounding flames lie in a direction such
as to generate an anticlockwise rotation. The time-averaged streamlines obtained by
numerical computation show such a rotation. For the right main flame, the situation
is reversed, and we obtain a clockwise rotation numerically. In figures 6(c) and 6(d),
we display two different configurations, with the gaps chosen to favour rotation
in opposite directions. In figure 6(c), the dominant air passage (gap) through the
arbitrarily distributed flame sources is obviously in the circumferential and clockwise
direction about the main flame, thus generating a clockwise rotation. In figure 6(d), the
dominant air passage is obviously in the circumferential and anticlockwise direction
about the main flame, thus generating an anticlockwise rotation.

2.4. On the role of gap fraction

As we have argued, the rotation is due to the coexistence of flame walls and gaps:
the former partially block the air stream, while the latter favour flows in a particular
circumferential direction. It would be interesting to see how the gap width influences
autorotation; it depends on many factors such as the number of side flames, shape of
the flames, distance between the centre flame and the side flames, thickness of the side
flames, etc. Detailed numerical computations can only yield quantitative results for
specific conditions. Here we consider the rotation speed as a function of gap fraction
defined as

ηn = A/(A + B)

for regularly distributed flame walls, where A is the gap length as shown in figures 2
and 4, B is the length of each flame wall. If the width C of the surrounding flame
walls is not negligible, we may use ηn = A/(A + B − C) to define the gap fraction. In
table 2, we give the gap fractions, rotation speeds and flame heights for the three-wall,
four-wall and six-wall-models computed previously. The six-flame-wall model has the
largest gap fraction and the rotation speed is the highest.



322 R. Zhou and Z.-N. Wu

(a) (b)
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Figure 6. Computed results showing the passage of air streams for different configurations.
(a) For a single plume air moves toward it directly without rotation. (b) A configuration
of organized flame sources generating a pair of fire whirls. (c) A configuration of randomly
distributed flame sources generating a clockwise fire whirl. (d ) A configuration of randomly
distributed flame sources generating an anticlockwise fire whirl.

n ηn ω (s−1) H (m)

3 0.143 12.0 6.3
4 0.250 17.5 6.5
6 0.575 25.0 7.2

Table 2. The influence of the number of flame walls (n) (with different gap fraction ηn) on
the angular velocity (ω) and the flame height (H ).

When there are no flame walls, ηn = 1, and when the flame walls form a closed
set, ηn = 0. The flame does not rotate in these two cases; hence the rotation speed
must increase to a maximum and then decrease when the gap fraction increases.
The gap fraction ηn,opt produces the highest autorotation. It can be conjectured that
ηn,opt ≈ 1/2, and this can be explained by considering a layout with anticlockwise
rotation such as in figures 2 and 4. For ηn < 1/2 the continuous increase of ηn means
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η 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

ω (s−1) 0 5.539 17.447 32.386 35.172 19.381 16.646 2.714 0

Table 3. The influence of the gap fraction (η) on the angular velocity (ω) for four-flame-wall
fire whirls.
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Figure 7. Dependence of the rotation speed on the gap fraction: squares, data; curve, fitted
polynomial.

more angular momentum added to the main flame to favour anticlockwise rotation,
whereas when ηn > 1/2 part of the air stream through the gaps will contribute a
negative angular momentum so that rotation decreases. In order to check this, we
consider the four-wall model with differen gap fractions. Table 3 gives the data
obtained by numerical computation. In figure 7 we display a polynomial fit of the
relation ω = ω(ηn) by using the data of table 3; we find that ηn,opt ≈ 1/2.

For other regularly distributed flame wall models, we have similar results. Hence
we have the following criterion for whether or not a fire whirl occurs:

Criterion. For a flame surrounded by regularly distributed flame walls, rotation occurs
if the gap fraction lies between 0 and 1, and maximum rotation occurs when the gap
fraction is 1/2.

For the case of non-regular or randomly distributed flame sources, it is not
convenient to relate the rotation speed to the gap fraction and to define a criterion
for fire whirl, since there is some uncertainty in defining this fraction. In figure 8, we
provide some examples for which the gap fraction is above 0 but the central flame
does not rotate.

In figure 8(a), the gap fraction is close to 1 and there is no rotation. In figure 8(b),
the gap fraction lies within 0 and 1 but each gap generates an independent vortex.
This shows that for the central flame to rotate these must be a sufficient number of
gaps (at least 3). If two flame walls form a corner, then the vortex is captured by the
corner and does not add angular momentum to the central flame. In figure 8(c), the
gap fraction still lies between 0 and 1 and close togethers two gaps generate a unique
vortex that is not at the centre of the main flame. In figure 8(d), there are two gaps:
one generates a stream in the clockwise direction and the other in the anticlockwise
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Figure 8. Several particular situations for which there is no rotation or the rotation is not
around the central flame.

direction so that there is no rotation. Thus, we are unable to give general criteria for
randomly distributed flame sources.

2.5. Regularly or randomly distributed flame sources

In a real fire disaster, interaction between wind and flame sources, non-uniformity of
combustion and the existence of topography may yield source configurations similar
to or different from those presented above. Nonetheless, if there are gaps oriented to
favour the passage of an air stream in such a direction as to augment the angular
momentum of a main flame, the flame rotates. The coexistence of particular geometry
topography, wind, and surrounding fires may also induce fire whirls.

Next we provide an example of fire whirl that might have been induced by
a combination of geometry and surrounding fires.† A fire occurred in Manitoba,
Canada, in the flax storage compound of Eucata Fibers on 19 April 2000. Bales
were arranged in a rectangular array. There were 1000 bales per stack in 42 stacks
packed 30 feet high. The stacks were separated by 200 feet and spread over 160 acres
(2640 × 2640 ft; or 800 × 800 m) Each stack was approximately 250 ft wide × 250 ft
long × 30 feet high (75 m × 75 m × 10 m). This is very similar to an urban area with
three-storey apartment complexes. Lightning hit the stacked bales, a fire started, and

† This example was kindly provided by a referee of this paper.
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fire whirls were reported in the centre region. A pickup truck driving by was lifted
from the ground and flipped over.

Multiple flame sources also exist for large-scale city fires. Satoh et al. (2005)
experimentally studied interaction among multiple fires in equidistant fire arrays.
They found that the vigorous burning in the array central region tends to cause the
fires there to merge and the merging flames grow into the gigantic fire whirl if wind
is blowing into one corner of the array. This can be considered as an example of fire
whirl induced by interaction between multiple fires and wind.

3. Height of the rotating flame
As noted in the Introduction, there are some experimental and numerical studies

on a plume contained in a rotating cylinder, which have shown that the flame height
varies due to the swirl motion. In § 2, we also observed that the height of the flame
depends on the rotation speed (see table 2). Here we consider an axisymmetrical flame
subjected to a given rotation speed and study the dependence of the flame height on
the rotation speed.

A real fire whirl involves many complex phenomena. The present analysis is
based on the following assumptions or simplifications: (i) The combustion is mixing-
controlled and the reaction of fuel and oxygen is infinitely fast. This assumption is
also used in our computation by the fire dynamics simulator (FDS), as the mixture
fraction combustion model. (ii) It takes a time τ (defined as the rising time) for
fuel gas to be mixed with entrained air at the stoichiometric ratio. A fuel particle
goes upwards during the rising time τ and reaches a final height of H , which is
defined as the flame height. (iii) When evaluating the buoyancy force an averaged
value Tf of the temperature inside the flame is used. (iv) When evaluating the
buoyancy force, viscous dissipation is not considered. (V) For the boundary layer
on the floor, a viscous thin-layer model is considered. (vi) The radius of the flame
is much smaller than its height, but since at the base of the flame we have used a
viscous thin-layer model (assumption (v)), we do not need this assumption. (Vii) As
explained in § 2.1, the mass added by the combustion source is so small that it can be
neglected.

With these approximations, we will be able to capture the main physics and obtain
a very simple expression describing the relationship between the rotation speed and
flame height. As shown in figure 9, the height of the rotating flame depends not only
on the rotation speed ω (which reduces the pressure thus increasing the buoyancy
force inside the flame) but also on the initial vertical velocity Vz0 at the top of the
boundary layer. The initial vertical velocity Vz0 is itself a function of the rotation
speed. The rising time τ varies with the rotation speed as well.

The analysis is split into four main steps:
1st step. In this step, as detailed in § 3.1, we study the role of rotation in increasing

the buoyancy force for the part of the flame above the boundary layer. The rotation
is shown to decrease the pressure, and thus increase the buoyancy force inside the
flame. Along the centreline of the plume, the buoyancy force acts to accelerate the
rising motion, which can be expressed as

fz ∼ f z + A2ω
2, (3.1)

where

f z = β(Tf − T0)g
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Figure 9. A simple model of the flame.

is the buoyancy force in the case without rotation, and

A2 =
r2
0

2RTf

[1 + β(Tf − T0)]g

is a derived parameter, where β is the volume expansion coefficient of the gas, T0 is the
temperature of the ambient gas, Tf is the temperature of the flame, r0 is the averaged
radius of the flame, R is the gas constant, and g is the gravitational acceleration.
According to the definitions of τ and H , the flame height is given by

H = 1
2
fzτ

2 + Vz0τ, (3.2)

where both Vz0 and τ are ω-dependent, to be solved in following steps.
2nd step. This step, as detailed in § 3.2, is concerned with the perturbation of initial

vertical velocity due to rotation. We shall prove that this perturbation satisfies relation

V ′
z0 ∼ −k1r0ω,

so that

Vz0 ∼ V z0 − k1r0ω, (3.3)

where V z0 is the initial vertical velocity in the case without rotation and k1 is a non-
dimensional parameter independent of ω. Hence, the rotation decreases the initial
vertical velocity.

3rd step. This step, as detailed in § 3.3, concerns the influence of rotation on the
rising time. We have shown that the rotation first enhances the entrainment then
suppresses it (see Appendix E), thereby first slowing the rate of air/fuel mixing then
speeding it up. The expression for the rising time is

τ ∼ τ − D1ω + D2ω
2, (3.4)

where

τ = (E − 1)
V z0

β(Tf − T0)g
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is the rising time in the case without rotation, and

D1 = (E − 1)
k1r0

β(Tf − T0)g
,

D2 =
r2
0V z0

2RTf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mρfuelr
2
0β(Tf − T0)

4ρ0

∫ r0

0

(
1 − r2

r2
0

)
B(r)r dr

[ ∫ r0

0

B(r)r dr

]2
E − E + 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× 1 + β(Tf − T0)

β2(Tf − T0)2g
,

E = exp

⎧⎪⎪⎨
⎪⎪⎩

mρfuelr
2
0 [1 + β(Tf − T0)]

4ρ0

∫ r0

0

B(r)r dr

⎫⎪⎪⎬
⎪⎪⎭

are derived parameters, where ρfuel is the averaged density of fuel gas inside the flame,
ρ0 is the background density, m is the stoichiometric ratio of air to fuel, and B(r) is
an unknown non-dimensional function of r .

4th step. In this step, as detailed below, we will use the results obtained in the
previous three steps and some further analysis to show that the height of the flame
can be described by H ∼ H0 + L(ω − ω0)

2.
Inserting (3.1), (3.3) and (3.4) into (3.2), we obtain the following expression for the

flame height:

H ∼ 1
2
(f z + A2ω

2)(τ − D1ω + D2ω
2)2 + (V z0 − k1r0ω)(τ − D1ω + D2ω

2),

or

H ∼ H − L1ω + L2ω
2 − L3ω

3 + L4ω
4 − L5ω

5 + L6ω
6, (3.5)

where

H ∼ 1
2
f zτ

2 + V z0τ

is the flame height in the case without rotation, and the series of terms of ω represent
the influence of rotation on the flame height, with coefficients

L1 = f zD1τ + D1V z0 + k1r0τ ,

L2 = 1
2
f zD

2
1 + A2τ

2 + f zD2τ + D1k1r0 + D2V z0,

L3 = A2D1τ + f zD1D2 + D2k1r0, L4 = 1
2
A2D

2
1 + 1

2
f zD

2
2 + A2D2τ ,

L5 = A2D1D2, L6 = 1
2
A2D

2
2 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.6)

Formula (3.5) can be used to show that the flame height first decreases and then
increases with the rotation speed. In this paper we are interested in fire whirls for
which the rotation speed is not very high, so that the last four terms in (3.5) are small
in comparison with the first three. To see that, we use two typical sets of parameters
(ω = 1 s−1, r0 = 10 m, Tf = 1000 K and ω = 10 s−1, r0 = 1 m, Tf =1000 K, for it has been
reported both experimentally and numerically that the faster the flame rotates, the
thinner it becomes) to estimate the magnitude of the last four terms.
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Note that

D2

τ
=

r2
0

2RTf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mρfuelr
2
0β(Tf − T0)

4ρ0

∫ r0

0

(
1 − r2

r2
0

)
B(r)r dr

[ ∫ r0

0

B(r)r dr

]2

E

E − 1
− 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× 1 + β(Tf − T0)

β(Tf − T0)
,

D2

D1

=
r2
0

2RTf

V z0

k1r0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mρfuelr
2
0β(Tf − T0)

4ρ0

∫ r0

0

(
1 − r2

r2
0

)
B(r)r dr

[ ∫ r0

0

B(r)r dr

]2

E

E − 1
− 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× 1 + β(Tf − T0)

β(Tf − T0)
,

A2

f z

=
r2
0

2RTf

[
1 +

1

β(Tf − T0)

]
.

For the first set (ω = 1 s−1, r0 = 10 m, Tf = 1000 K), it can be estimated that
r2
0/2RTf ∼ O(10−3), leading to

D2

τ
∼ D2

D1

∼ A2

f z

∼ O(10−3).

Comparing corresponding terms of the coefficients given by (3.6), we obtain

L3

L1

∼ O(10−3),
L5

L1

∼ O(10−6),
L4

L2

∼ O(10−3),
L6

L2

∼ O(10−9), (3.7)

and thus

L3ω
3

L1ω
∼ O(10−3),

L5ω
5

L1ω
∼ O(10−6),

L4ω
4

L2ω2
∼ O(10−3),

L6ω
6

L2ω2
∼ O(10−9). (3.8)

For the second set (ω = 10 s−1, r0 = 1 m, Tf =1000 K), it can be estimated that
r2
0/2RTf ∼ O(10−5), leading to

D2

τ
∼ D2

D1

∼ A2

f z

∼ O(10−5).

Comparing corresponding terms of the coefficients given by (3.6), we obtain

L3

L1

∼ O(10−5),
L5

L1

∼ O(10−10),
L4

L2

∼ O(10−5),
L6

L2

∼ O(10−15), (3.9)

and thus

L3ω
3

L1ω
∼ O(10−3),

L5ω
5

L1ω
∼ O(10−6),

L4ω
4

L2ω2
∼ O(10−3),

L6ω
6

L2ω2
∼ O(10−11).

(3.10)

Thus we see that the last four terms are negligible in comparison with the leading
terms. Neglecting them does not affect the conclusion but makes the formula simpler.
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Figure 10. Dependence of the flame height on the rotation speed.

With the last terms neglected, (3.5) becomes

H ∼ H − L1ω + L2ω
2, (3.11)

or

H ∼ H0 + L(ω − ω0)
2, (3.12)

where

L = L2, ω0 =
L1

2L2

, H0 = H − L2
1

4L2

.

From (3.12), it is clear that the flame height has a minimum value H0 at ω =ω0. The
non-rotating flame height H in (3.11) and the minimum-height rotation speed ω0 in
(3.12) are two important parameters for fire whirls, which can be specified as the
characteristic flame height and the characteristic rotation speed, respectively, to write
the non-dimensional form of the expression relating the flame height to the rotation
speed:

H ∗ =
H

H
, ω∗ =

ω

ω0

, H ∗ ∼ H ∗
0 + L∗(ω∗ − 1)2. (3.13a–c)

Battaglia et al. (2000a) give results that indicate that the flame height decreases
with whirl to a minimum before increasing again as the whirl increases further. The
present model supports their findings. In figure 10 we display a comparison of the
curve (3.13c) to the numerical results of Battaglia et al. (2000a), which have been
non-dimensionalized by (3.13).

The above example is for a fire whirl generated by artificially imposing an angular
momentum on a flame. Now we check if (3.13) can also be applied to the case of
fire whirls produced due to surrounding flame sources. In figure 10 we also display
a comparison of the curve (3.13c) to our numerical results for the four-flame-wall
model with different gap fractions, which have been non-dimensionalized by (3.13).
We still see that the flame height first decreases before increasing as the rotation
speed increases.
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3.1. Role of the rotation speed in increasing the buoyancy force

For the region outside the boundary layer, we consider an axisymmetric steady
inviscid flow and write the governing equations in a cylindrical coordinate system as

∂Vr

∂r
+

Vr

r
+

∂Vz

∂z
= 0, (3.14a)

Vr

∂Vr

∂r
+ Vz

∂Vr

∂z
− V 2

θ

r
= − 1

ρ

∂p

∂r
, (3.14b)

Vr

∂Vz

∂r
+ Vz

∂Vz

∂z
= − 1

ρ

∂p

∂z
− g. (3.14c)

Here Vr , Vθ and Vz are respectively the radial (r), azimuthal (θ) and axial (z) velocity
components, p is the pressure, ρ is the density and g is the gravitational acceleration.

First we consider a flame without rotation, i.e. Vθ = 0. In that case the physical
quantities are identified by an overbar and we have

V r

∂V r

∂r
+ V z

∂V r

∂z
= − 1

ρ

∂p

∂r
, (3.15a)

V r

∂V z

∂r
+ V z

∂V z

∂z
= − 1

ρ

∂p

∂z
− g. (3.15b)

Using the well-known Boussinesq approximation, (3.15b) can be rewritten as

V r

∂V z

∂r
+ V z

∂V z

∂z
= β(Tf − T0)g, (3.16)

where β is the volume expansion coefficient. Along the centreline, we take r = 0 in
(3.16) and note that V r =0 at r = 0 so that the following equation holds along the
centreline of the plume:

V z

∂V z

∂z
= β(Tf − T0)g. (3.17)

Here

V z

∂V z

∂z
=

dz

dt

∂V z

∂z
=

dV z

dt
,

thus

dV z

dt
= β(Tf − T0)g. (3.18)

Fuel particles start from the top of the boundary layer at t = 0, which is assumed
to be the beginning of the mixing-controlled combustion. Denoting the initial axial
velocity as V z0 and integrating (3.18), we obtain

V z(t) =
dz

dt
= β(Tf − T0)gt + V z0. (3.19)

Integrating again yields

z(t) = 1
2
β(Tf − T0)gt2 + V z0t. (3.20)

According to our assumption, the flame height H is obtained when t is equal to the
rising time τ , so that

H = z(τ ) = 1
2
β(Tf − T0)gτ 2 + V z0τ . (3.21)
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Now consider a rotating flame. By means of an order of magnitude estimation (see
Appendix B), we show that (3.14) can be simplified to

1

ρ

∂p

∂r
∼ ω2r, (3.22a)

Vr

∂Vz

∂r
+ Vz

∂Vz

∂z
∼ − 1

ρ

∂p

∂z
− g. (3.22b)

The flame region is assumed to be a cylinder of hot gas with a uniform temperature
Tf . The pressure is related to the temperature through the equation of state

p = ρRTf . (3.23)

Here R is the gas constant. Combining (3.23) and (3.22a) yields

RTf

ρ

∂(ρ)

∂r
∼ ω2r. (3.24)

Integrating (3.24) results in

ρ ∼ C exp(ω2r2/2RTf ), (3.25)

where C is a constant. We use the Boussinesq assumption to write

ρ |r=r0
∼ ρ0/[1 + β(Tf − T0)]. (3.26)

Here r0 is the edge of the rotating flame, assumed to have the same value for all z, ρ0

is the background density and T0 is the background temperature. Inserting (3.26) into
(3.25), we obtain C ∼ ρ0 exp(−ω2r2

0/2RTf )/[1 + β(Tf − T0)]. Hence the expression for
the density is given by

ρ ∼ ρ0 exp
(
ω2

(
r2 − r2

0

)/
2RTf

)/
[1 + β(Tf − T0)]. (3.27)

The parameter ω2(r2 − r2
0 )/2RTf is generally very small, so (3.27) can be written as

ρ = ρ + ρ ′, (3.28)

where

ρ ∼ ρ0

[1 + β(Tf − T0)]
(3.29)

is the flame density in the case without rotation, and

ρ ′ ∼
ρ0ω

2
(
r2 − r2

0

)/
2RTf

1 + β(Tf − T0)
(3.30)

is the perturbation caused by rotation. Inserting (3.30) into (3.23), we obtain the
perturbation pressure as follows:

p′ ∼
ρ0ω

2
(
r2 − r2

0

)/
2

1 + β(Tf − T0)
. (3.31)

Generally, for simple flame combustion without rotation, the spatial distribution
of pressure is evaluated by the equation of hydrostatic equilibrium in an isotropic
atmosphere as

p = pa − ρ0gz, (3.32)
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where pa is the standard atmosphere pressure. The sum of (3.31) and (3.33) gives the
pressure distribution inside the flame as

p ∼ pa − ρ0gz +
ρ0ω

2
(
r2 − r2

0

)/
2

1 + β(Tf − T0)
. (3.33)

Substituting (3.27), (3.31) and (3.33) into (3.22b) yields

Vr

∂Vz

∂r
+ Vz

∂Vz

∂z
∼

{
exp

(
−ω2

(
r2 − r2

0

))/
2RTf

)
[1 + β(Tf − T0)] − 1

}
g. (3.34)

The right-hand side of (3.34) is the buoyancy force inside the flame, an increasing
function of ω. Taking r = 0 and thus Vr = 0 (along the centreline of the plume), we
obtain

Vz

∂Vz

∂z
=

dVz

dt
= fz, (3.35)

where

fz ∼ exp
(
ω2r2

0

/
2RTf

)
[1 + β(Tf − T0)] − 1, (3.36)

showing that along the centreline of the plume, the buoyancy force fz acts to accelerate
of the rising motion. Expanding (3.36) about ω2r2

0/2RTf results in

fz ∼ f z + A2ω
2, (3.37)

where

f z = β(Tf − T0)g

is the buoyancy force in the case without rotation, and the square term of ω shows
the increase of buoyancy force along the centreline of the plume due to rotation, with
coefficient

A2 =
r2
0

2RTf

[1 + β(Tf − T0)]g.

Integrating (3.35) yields

Vz = fzt + Vz0, (3.38)

or

Vz =
√

2fzz + V 2
z0. (3.39)

Again, integrating (3.38) yields

z = 1
2
fzt

2 + Vz0t. (3.40)

3.2. Role of the rotation speed in reducing the initial vertical velocity

For the boundary layer flow, the continuity equation and the Navier–Stokes equations
are written in axisymmetric form as follows:

∂Vr

∂r
+

Vr

r
+

∂Vz

∂z
= 0, (3.41a)

Vr

∂Vr

∂r
+ Vz

∂Vr

∂z
− V 2

θ

r
= − 1

ρ

∂p

∂r
+ ν

[
∂2Vr

∂r2
+

∂

∂r

(
Vr

r

)
+

∂2Vr

∂z2

]
, (3.41b)

Vr

∂Vθ

∂r
+ Vz

∂Vθ

∂z
+

VrVθ

r
= ν

[
∂2Vθ

∂r2
+

∂

∂r

(
Vθ

r

)
+

∂2Vθ

∂z2

]
, (3.41c)
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Vr

∂Vz

∂r
+ Vz

∂Vz

∂z
=

1

ρ

∂p

∂z
+ ν

(
∂2Vz

∂r2
+

1

r

∂Vz

∂r
+

∂2Vz

∂z2

)
− g. (3.41d)

To simplify, we non-dimensionalize equations (3.41) and ignore smaller terms based
on order-of-magnitude estimations (see Appendix C). Eventually we obtain

Vr

∂Vr

∂r
+ Vz

∂Vr

∂z
− V 2

θ

r
∼ ν

∂2Vr

∂z2
. (3.42)

If no rotation occurs, there are only radial and axial velocity components, represented
by V r and V z, satisfying

V r

∂V r

∂r
+ V z

∂V r

∂z
∼ ν

∂2V r

∂z2
. (3.43)

Now we consider small perturbations caused by rotation, rewriting the radial and
axial velocity components as V r + V ′

r and V z + V ′
z , which satisfy

(V r + V ′
r )

∂(V r + V ′
r )

∂r
+ (V z + V ′

z )
∂(V r + V ′

r )

∂z
− V 2

θ

r
∼ ν

∂2(V r + V ′
r )

∂z2
. (3.44)

Neglecting the small terms of second-order yields

V r

∂V r

∂r
+V r

∂V ′
r

∂r
+V ′

r

∂V r

∂r
+V z

∂V r

∂z
+V z

∂V ′
r

∂z
+V ′

z

∂V r

∂z
−V 2

θ

r
∼ ν

∂2V r

∂z2
+ν

∂2V ′
r

∂z2
. (3.45)

Using (3.43) to eliminate the terms without any perturbing quantity, we obtain

V r

∂V ′
r

∂r
+ V ′

r

∂V r

∂r
+ V z

∂V ′
r

∂z
+ V ′

z

∂V r

∂z
− V 2

θ

r
∼ ν

∂2V ′
r

∂z2
. (3.46)

Similarly, from the continuity equation

∂V r

∂r
+

V r

r
+

∂V z

∂z
= 0 (3.47)

and

∂(V r + V ′
r )

∂r
+

(V r + V ′
r )

r
+

∂(V z + V ′
z )

∂z
= 0, (3.48)

we obtain
∂V ′

r

∂r
+

V ′
r

r
+

∂V ′
z

∂z
= 0. (3.49)

From (3.46) and (3.49), we obtain (see Appendix D)

V ′
r ∼ k1ω

2r0

ν
rz, V ′

z ∼ −k1ω
2r0

ν
z2. (3.50)

On the top of the boundary layer, substituting z = δ into (3.50) yields

V ′
z0 = V ′

z |z=δ∼ −k1ω
2r0

ν
δ2. (3.51)

Using (C6), we have

δ ∼
√

r0

VΩ

ν =

√
ν

ω
. (3.52)

Inserting (3.52) into (3.51) yields

V ′
z0 ∼ −k1r0ω, (3.53)
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Figure 11. Vertical (axial) velocity along the centreline of the central flame for the
four-flame-wall model.

and thus

Vz0 ∼ V z0 − k1r0ω, (3.54)

showing that the rotation reduces the initial vertical velocity due to the viscous
layer.

It should be emphasized that the division into an inviscid part and a viscous part is
essential to our analysis. In order to show what is happening, we display in figure 11
the vertical velocity along the centreline of the main flame for different rotation speeds
(by using different gap fractions for the four-flame-wall model). It is seen that for
the bottom of the viscous-dominated part of the flame, the vertical velocity decreases
with the rotation speed, while for the upper or buoyancy-dominated part, the vertical
velocity is an increasing function of the rotation speed.

3.3. Role of the rotation speed in first shortening then extending the rising time

According to § 3.1, the buoyancy force along the centreline of the plume is

fz ∼
{
exp

(
ω2r2

0

/
2RTf

)
[1 + β(Tf − T0)] − 1

}
g. (3.55)

Thus, the axial velocity is

Vz = fzt + Vz0, (3.56)

where, according to § 3.2,

Vz0 ∼ V z0 − k1r0ω. (3.57)

We assume the following expression for the whole space:

V̂z = B(r)(fzt + Vz0), V̂z0 = B(r)Vz0, (3.58)
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where B(r) is an unknown non-dimensional function of r , satisfying B(0) = 1. For a
section of flame with height z above the boundary layer, the following equation holds
due to mass conservation:∫ r0

0

ρ(r)(V̂z − V̂z0)2πr dr = ρ(r0)Vent 2πr0z. (3.59)

Here Vent is height-averaged entrainment velocity, and ρ(r) is given by (see § 3.1)

ρ(r) ∼ ρ0 exp
(
ω2

(
r2 − r2

0

))/
2RTf /[1 + β(Tf − T0)]. (3.60)

Inserting (3.58) into (3.59) yields

Vent =

∫ r0

0

ρ(r)B(r)r dr

r0ρ(r0)

Vz − Vz0

z
=

∫ r0

0

ρ(r)B(r)r dr

r0ρ(r0)

fzt
1
2
fzt2 + Vz0t

. (3.61)

The role of the rotation speed in the height-averaged entrainment velocity, represented
by (3.61), will be made clear in Appendix E. Using (3.61), the total mass of entrained
air can be written as

Qair =

∫ τ

0

ρ(r0)Vent 2πr0H dt

= 2πH

∫ r0

0

ρ(r)B(r)r dr

∫ τ

0

fzt
1
2
fzt2 + Vz0t

dt

= 4πH

∫ r0

0

ρ(r)B(r)r dr ln
1
2
fzτ + Vz0

Vz0

. (3.62)

On the other hand, the mass of fuel inside the flame is

Qfuel = ρfuelπr2
0H, (3.63)

where ρfuel is the averaged density of fuel gas inside the flame. The stoichiometric
ratio of fuel to air is 1 : m, i.e.

Qair = mQfuel. (3.64)

Inserting (3.62) and (3.63) into (3.64), we obtain the rising time as

τ =

⎧⎪⎪⎨
⎪⎪⎩

exp

⎡
⎢⎢⎣ mρfuelr

2
0

4

∫ r0

0

ρ(r)B(r)rdr

⎤
⎥⎥⎦ − 1

⎫⎪⎪⎬
⎪⎪⎭

2Vz0

fz

, (3.65)

Substituting (3.55), (3.57) and (3.60) into (3.65) and expanding the exponential function
about ω2r2

0/2RTf , we obtain

τ ∼ τ − D1ω + D2ω
2, (3.66)

where

τ = (E − 1)
V z0

β(Tf − T0)g
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is the rising time in the case without rotation, and the series of terms of ω represent
the influence of rotation on the rising time, with coefficients

D1 = (E − 1)
k1r0

β(Tf − T0)g
,

D2 =
r2
0V z0

2RTf

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mρfuelr
2
0β(Tf − T0)

4ρ0

∫ r0

0

(
1 − r2

r2
0

)
B(r)r dr

[ ∫ r0

0

B(r)r dr

]2
E − E + 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× 1 + β(Tf − T0)

β2(Tf − T0)2g
.

In the above expressions, E is a parameter given by

E = exp

⎧⎪⎪⎨
⎪⎪⎩

mρfuelr
2
0 [1 + β(Tf − T0)]

4ρ0

∫ r0

0

B(r)r dr

⎫⎪⎪⎬
⎪⎪⎭

.

Clearly E > 1 and thus D1 > 0. Now we shall prove that D2 is a positive number.
Let

γ =
mρfuelr

2
0

4ρ0

,

and the terms within curly brackets of the expression for D2 can be rewritten as

Γ (γ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β(Tf − T0)

∫ r0

0

(
1 − r2

r2
0

)
B(r)r dr

[ ∫ r0

0

B(r)r dr

]2
(γ − 1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

exp

⎧⎪⎪⎨
⎪⎪⎩

[1 + β(Tf − T0)]∫ r0

0

B(r)r dr

γ

⎫⎪⎪⎬
⎪⎪⎭

+ 1.

(3.67)

It is easy to see that Γ (γ ) is an increasing function of γ , which means that Γ (γ ) > 0
as γ > 0, and thus D2 > 0. Now from (3.66) it is clear that the rising time first
decreases before increasing as the rotation speed increases, due to the height-averaged
entrainment velocity varying inversely (see Appendix E). In figure 12, we display a
comparison of the curve (3.66) to data calculated by our numerical results for the
four-flame-wall model with different gap fractions, showing that our analysis is correct.

4. Concluding remarks
In this paper, we have used numerical simulation, experimental observation and

simplified physical analysis to study fire whirls and obtained the following conclusions:
(i) Rotation of a flame can be produced by surrounding flames which partially

block the inward air stream and favour flows of the main flame in a particular
circumferential direction. Unlike a solid wall, the flame wall weakens the momentum
of the air stream entrained by the main flame due to the vertical motion inside
the surrounding flames. Both regularly distributed and randomly distributed flame
sources may induce rotation if they are placed asymmetrically in such a way as to
have gaps favouring flows in a given circumferential direction.
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Figure 12. Dependence of the rising time on the rotation speed. Symbols: present data.
Line: the fitted curve (3.66).

(ii) This rotation is absent if the surrounding flames are removed (gap fraction
equal to 1) or if they form a closed polygonal flame (gap fraction equal to 0).
For regularly distributed sources, the rotation speed is found to be highest if the
gap fraction is close to 1/2, because for a gap fraction higher than this value, the
additional air stream through the gaps contributes an angular momentum in such a
direction as to oppose rotation. For irregularly distributed sources, no general criteria
have been found in the present study.

(iii) The flame height H increases substantially due to rotation for large rotation
speed while it decreases for small rotation speed. For large rotation speed, the rotation
decreases the pressure thus increases the buoyancy force inside the flame. Also, the
rotation suppresses the entrainment thereby slowing the rate of air/fuel mixing. For
particular rising time, a rapid rising fuel particle can reach a higher altitude, thus
the flame height increases with rotation. For low rotation speed, the initial vertical
velocity of the flame, controlled by the boundary layer, is a decreasing function of the
rotation speed. On the other hand, the rotation enhances the entrainment and speeds
up the rate of air/fuel mixing, thus the rising time is shortened. Both cause the flame
to decrease with swirling for small rotation speed.

In the present study, the quantitative relationship between the momentum reduction
and the characteristics of the surrounding flame wall was not considered, but with
such quantitative information, we could construct useful models to predict the rotation
speed for a given source distributions. This could be a subject for future study.

A second subject deserving further study is the fire whirl for very high rotation
speed, not considered here. For very high rotation speed, the flame becomes highly
unstable. Under these conditions the flame shortens and smoke is formed (Chigier
et al. 1970).

This work has been supported by the China NKBRSF project No. 2001CB409600.
The authors are grateful to the referees for providing them with new materials,
suggestions and help which proved to be very important while expanding and
improving this work.



338 R. Zhou and Z.-N. Wu

Figure 13. (a) The triangle and (b) hexagon centred pools made up of small blocks
conforming with the underlying grid.

Appendix A. Numerical simulation method
The numerical simulations are performed by using the fire dynamics simulator

(FDS) code (McGrattan 2004). To simulate fires of multiple flame sources, we have
adapted the software to consider fire pools of any shape. Below we first outline the
basic FDS tool, then we give the details related to our computations.

A.1. Basic numerical method

FDS is a computational fluid dynamics (CFD) model of fire-driven flow, developed by
NIST, USA, whose codes are in the public domain. It solves the form of the Navier–
Stokes equations appropriate for low-speed, thermally driven flow with emphasis
on smoke and heat transport from fires by means of large-eddy simulation. The
subgrid-scale motions are modelled by the Smagorinsky model. The core algorithm
of the FDS is an explicit predictor–corrector scheme, second-order accurate in space
and time. For most applications, FDS uses a mixture fraction combustion model,
which assumes that combustion is mixing-controlled, and that the reaction of fuel
and oxygen is infinitely fast.

A.2. Specific methods and conditions used in the present computations

In our computations, the computational domain is 10.0 m × 10.0 m × 10.0 m. The
origin of the Cartesian coordinate system is at the centre of the base central pool.
For the four-wall model, the central fuel pool has size 2.0 m × 2.0 m × 0.2 m and the
surrounding four rectangular fuel pools are of uniform size 3.5 m × 0.5 m × 0.2 m.

The geometrical shapes of the central fuel pools are designed to fit the number
of surrounding pools, e.g. a regular triangle for three pools, square for four pools
and regular hexagon for six pools, with each side length D3, D4 and D6, satisfying
D2

3 =
√

3D2
4/4 = 6D2

6 to ensure the same area of the central pool (here 4.0 m2). All the
surrounding pools are the same width of 0.5 m, and the gap width is fixed at 1 m in
all cases. Unfortunately, not all fuel pools can be precisely modelled in a simulation
because FDS approximates the governing equations on a rectilinear grid and the user
has to prescribe rectangular obstructions that must conform with the underlying grid.
In order to solve this problem, we represent each shape, such as triangle or hexagon,
by a number of small regular blocks of rectangular shape as shown in figure 13. Such
a method is accurate when this number is large enough.

In all the simulations, the heat release rate per unit area (HRRPUA), which
represents the fire combustion intensity, is fixed at 2000 kW m−2. The boundary
condition for the floor of the computational domain is that of a cold inert wall. For
the ceiling and the four side surfaces an open condition is used to describe a passive
opening to the exterior atmosphere.
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Appendix B. Simplification of the Euler equations of the boundary layer
The flame diameter σ is assumed to be much smaller than the flame height H . We

use the flame height H as the characteristic length and the velocity VH = Vz|z = H as
the characteristic velocity, and define the following non-dimensional quantities:

r∗ =
r

H
, z∗ =

z

H
, σ ∗ =

σ

H
, V ∗

r =
Vr

VH

, V ∗
z =

Vz

VH

, p∗ =
p

ρV 2
H

. (B 1)

Multiplying (3.14a) by H/VH and (3.14b, c) by H/V 2
H , we use the non-dimensional

quantities defined by (B 1) and rewrite equations (3.14) as follows:

∂V ∗
r

∂r∗ +
V ∗

r

r∗ +
∂V ∗

z

∂z∗ = 0, (B 2a)

1 1 1

V ∗
r

∂V ∗
r

∂r∗ + V ∗
z

∂V ∗
r

∂z∗ − V ∗2
θ

r∗ = −∂p∗

∂r∗ , (B 2b)

σ ∗ · 1 1 · σ ∗ 1

σ ∗
1

σ ∗

V ∗
r

∂V ∗
z

∂r∗ + V ∗
z

∂V ∗
z

∂z∗ = −∂p∗

∂z∗ − H

V 2
H

g, (B 2c)

σ ∗ · 1

σ ∗ 1 · 1 1 1

The estimated order of magnitude of the terms in (B 2), noting them below them are
noted. Since σ ∗ = σ/H is a small quantity, with r being between 0 and σ/2, and z

being between 0 and H , we have the following estimations:

r∗ =
r

H
∼ O(σ ∗), z∗ =

z

H
∼ O(1), (B 3)

V ∗
z =

Vz

VH

∼ O(1). (B 4)

The continuity equation (B 2a) shows that the order of V ∗
r is smaller than that of V ∗

z ,
therefore

V ∗
r ∼ O(σ ∗). (B 5)

Estimations for the velocity derivatives in the non-dimensional equations (B 2) are

∂V ∗
r

∂r∗ ∼ O(1),
∂V ∗

r

∂z∗ ∼ O(σ ∗),
∂V ∗

z

∂r∗ ∼ O

(
1

σ ∗

)
,

∂V ∗
z

∂r∗ ∼ O

(
1

σ ∗

)
,

∂V ∗
z

∂z∗ ∼ O(1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B 6)

Reserving the primary terms in equation (B 2b, c), we have

−V ∗2
θ

r∗ ∼ −∂p∗

∂r∗ , (B 7a)

V ∗
r

∂V ∗
z

∂r∗ + V ∗
z

∂V ∗
z

∂z∗ ∼ −∂p∗

∂z∗ − H

V 2
H

g, (B 7b)
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or in dimensional form (using Vθ = ωr , where ω is the angular velocity of the flame):

1

ρ

∂p

∂r
∼ ω2r, (B 8a)

Vr

∂Vz

∂r
+ Vz

∂Vz

∂z
∼ − 1

ρ

∂p

∂z
− g. (B 8b)

Appendix C. Simplification of the Navier–Stokes equations
in the boundary layer

Specifying the flame radius r0 as the characteristic length and the maximum rotation
speed VΩ = ωr0 as the characteristic speed, and denoting the boundary layer thickness
as δ, we define the following non-dimensional quantities:

r∗ =
r

r0

, z∗ =
z

r0

, δ∗ =
δ

r0

, V ∗
r =

Vr

VΩ

, V ∗
z =

Vz

VΩ

, p∗ =
p

ρV 2
Ω

. (C 1)

Multiplying (3.41a) by r0/VΩ and (3.41b–d ) by r0/V 2
Ω , we use the non-dimensional

quantities defined by (C 1) and rewrite equations (3.41) in non-dimensional form as
follows:

∂V ∗
r

∂r∗ +
V ∗

r

r∗ +
∂V ∗

z

∂z∗ = 0, (C 2a)

1 1 1

V ∗
r

∂V ∗
r

∂r∗ + V ∗
z

∂V ∗
r

∂z∗ − V ∗2
θ

r∗ = −∂p∗

∂r∗ +
1

Re

[
∂2V ∗

r

∂r∗2
+

∂

∂r∗

(
V ∗

r

r∗

)
+

∂2V ∗
r

∂z∗2

]
, (C 2b)

1 · 1 δ∗ · 1

δ∗ 1 δ∗ δ∗2 1 1
1

δ∗2

V ∗
r

∂V ∗
θ

∂r∗ + V ∗
z

∂V ∗
θ

∂z∗ +
V ∗

r V ∗
θ

r∗ =
1

Re

[
∂2V ∗

θ

∂r∗2
+

∂

∂r∗

(
V ∗

θ

r∗

)
+

∂2V ∗
θ

∂z∗2

]
, (C 2c)

1 · 1 δ∗ · 1

δ∗ 1 δ∗2 1 1
1

δ∗2

V ∗
r

∂V ∗
z

∂r∗ + V ∗
z

∂V ∗
z

∂z∗ = −∂p∗

∂z∗ +
1

Re

(
∂2V ∗

z

∂r∗2
+

1

r∗
∂V ∗

z

∂r∗ +
∂2V ∗

z

∂z∗2

)
− r0

V 2
Ω

g, (C 2d)

1 · δ∗ δ∗ · 1 1 δ∗2 δ∗ 1 · δ∗ 1

δ∗ 1

where Re = VΩr0/ν is the Reynolds number.
Again the order of magnitude of the terms in (C 2), are given below them. By

assumption, δ∗ = δ/r0 is a small quantity. In the boundary layer, r being between 0
and r0, z being between 0 and δ, Vθ being between 0 and VΩ , we have the following
estimations:

r∗ =
r

r0

∼ O(1), z∗ =
z

r0

∼ O(δ∗), V ∗
θ =

Vθ

VΩ

∼ O(1). (C 3)

The continuity equation (C 2a) shows that the order of V ∗
z is smaller than that of V ∗

r ,
therefore

V ∗
r ∼ O(1), V ∗

z ∼ O(δ∗). (C 4)
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Estimations for the velocity derivatives in the non-dimensional equations (C 2) are

∂V ∗
r

∂r∗ ∼ O(1),
∂2V ∗

r

∂r∗2
∼ O(1),

∂

∂r∗

(
V ∗

r

r∗

)
∼ O(1),

∂V ∗
r

∂z∗ ∼ O

(
1

δ∗

)
,
∂2V ∗

r

∂z∗2
∼ O

(
1

δ∗2

)
,

∂V ∗
θ

∂r∗ ∼ O(1),
∂2V ∗

θ

∂r∗2
∼ O(1),

∂

∂r∗

(
V ∗

θ

r∗

)
∼ O(1),

∂V ∗
θ

∂z∗ ∼ O

(
1

δ∗

)
,
∂2V ∗

θ

∂z∗2
∼ O

(
1

δ∗2

)
,

∂V ∗
z

∂r∗ ∼ O(δ∗),
∂2V ∗

z

∂r∗2
∼ O(δ∗2),

∂V ∗
z

∂z∗ ∼ O(1),
∂2V ∗

z

∂z∗2
∼ O(1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C 5)

Equation (C 2c) shows the equilibrium between the inertial forces and the viscosity
forces. The orders of the inertial terms have been estimated as 1 while that of the
maximum viscosity term ∂2V ∗

θ /∂z∗2 has been estimated as O(1/δ∗2), which when
multiplied by 1/Re should equal O(1), i.e.

1

Re

1

δ∗2
∼ O(1),

so
1

Re
∼ O(δ∗2). (C 6)

In equation (C 2d ), the inertial terms and the viscosity terms are all of small magnitude,
implying that the pressure term has to equal the gravity term, whose order is 1, i.e.

∂p∗

∂z∗ ∼ O(1), (C 7)

and thus,

∂p∗

∂r∗ ∼ O(δ∗). (C 8)

Reserving the primary terms in equation (C 2b), we have

V ∗
r

∂V ∗
r

∂r∗ + V ∗
z

∂V ∗
r

∂z∗ − V ∗2
θ

r∗ ∼ 1

Re

∂2V ∗
r

∂z∗2
, (C 9)

or in dimensional form:

Vr

∂Vr

∂r
+ Vz

∂Vr

∂z
− V 2

θ

r
∼ ν

∂2Vr

∂z2
. (C 9b)

Appendix D. Solution of the perturbation equations in the boundary layer
We have obtained in § 3.2 the following equations for the perturbing velocity

components:

V r

∂V ′
r

∂r
+ V ′

r

∂V r

∂r
+ V z

∂V ′
r

∂z
+ V ′

z

∂V r

∂z
− V 2

θ

r
= ν

∂2V ′
r

∂z2
. (D 1a)

∂V ′
r

∂r
+

V ′
r

r
+

∂V ′
z

∂z
= 0. (D 1b)

The rotation speed Vθ is in direct proportion to ωr , i.e. Vθ ∼ ωr , thus

V 2
θ

r
∼ ω2r. (D 2)
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Note that V r and V z are independent of ω in equation (D 1a), so we must have

V ′
r ∼ ω2, V ′

z ∼ ω2. (D 3)

Based on the standard dimensional analysis, V ′
r has the following expression:

V ′
r ∼ ±ω2rnr3−n

0

ν
f (z∗), n = 0, 1, 2, 3. (D 4)

Here z∗ = z/r0 is a non-dimensional variable and f (z∗) is an unknown non-
dimensional function. In order to determine the index n, we substitute (D 4) into
(D1b) to obtain

V ′
z ∼ (n + 1)ω2rn−1r3−n

0

ν

∫
f (z∗) dz. (D 5)

Vz can be neither zero nor infinite at r = 0, so we must have n= 1 and thus

V ′
r ∼ ±ω2rr2

0

ν
f (z∗). (D 6)

Since z∗ ∼ O(δ∗) is a small quantity, the use of Taylor’s expansion leads to

V ′
r ∼ ±ω2rr2

0

ν
(k0 + k1z

∗ + k2z
∗2 + · · ·), (D 7)

where k0, k1, k2, . . . are non-dimensional coefficients. With the non-slip boundary
condition V ′

r |z = 0 = 0, the constant k0 is determined to be zero. Furthermore,
substituting the following boundary conditions into equation (D 1a):

z = 0, V r = V ′
r = V z = V ′

z = Vθ = 0, (D 8)

we obtain

z = 0,
∂2V ′

r

∂z2
= 0, (D 9)

which implies k2 = 0. Neglecting the terms of order higher than O(r∗2) in (D 7), we
have

V ′
r ∼ ±k1ω

2r0

ν
rz. (D 10)

Inserting (D 10) into (D1b) yields

V ′
z ∼ ∓k1ω

2r0

ν
z2, (D 11)

which satisfies the boundary condition V ′
z |z =0 = 0.

Now we determine whether the perturbing velocity components are positive or
negative. If no rotation occurs, the air flows towards the central axis and rises up it,
i.e.

V r < 0, V z > 0.

When the flame is rotating, the centrifugal force acts on the system, doing negative
work to reduce the kinetic energy. As the velocity changes, the work done by each
force changes, and the velocity reaches a new balance. The kinetic energy also reduces
If

V ′
r ∼ k1ω

2r0

ν
rz, V ′

z ∼ −k1ω
2r0

ν
z2, (D 12a)
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both Vr and Vz decrease. If

V ′
r ∼ −k1ω

2r0

ν
rz, V ′

z ∼ k1ω
2r0

ν
z2, (D 12b)

both Vr and Vz increase. Obviously only the former is rational.

Appendix E. Role of rotation in first enhancing then suppressing
the entrainment

We have the following expression for the height-averaged entrainment velocity
derived in § 3.3:

Vent =

∫ r0

0

ρ(r)B(r)r dr

r0ρ(r0)
· Vz − Vz0

z
. (E 1)

where (see § 3.1)

Vz =
√

2fzz + V 2
z0. (E 2)

Substituting (E 2) into (E 1), we obtain

Vent =

∫ r0

0

ρ(r)B(r)r dr

r0ρ(r0)

√
2fzz + V 2

z0 − Vz0

z
. (E 3)

Roughly, (E 3) can be simplified as

Vent =

∫ r0

0

ρ(r)B(r)r dr

r0ρ(r0)

√
2fzz

z
. (E 4)

Inserting (3.55) and (3.60) into (E 4) and expanding the exponential function about
ω2r2

0/2RT yields

Vent ∼ V ent + J2ω
2 − J4ω

4, (E 5)

where

V ent =

√
β(Tf − T0)g

r0

∫ r0

0

B(r)r dr

is the height-averaged entrainment velocity in the case without rotation, and the series
of terms of ω represent the influence of rotation on entrainment, with coefficients as
follows:

J2 =
r2
0

2RTf

√
β(Tf − T0)g

r0

{[
1 +

1

β(Tf − T0)

] ∫ r0

0

B(r)r dr −
∫ r0

0

(
1 − r2

r2
0

)
B(r)r dr

}
,

J4 =
r2
0

2RTf

√
β(Tf − T0)g

r0

[
1 +

1

β(Tf − T0)

] ∫ r0

0

(
1 − r2

r2
0

)
B(r)r dr.

Obviously J4 is a positive number, and∫ r0

0

(
1 − r2

r2
0

)
B(r)r dr <

∫ r0

0

B(r)r dr

leads to J2 > 0. So (E 5) shows that the rotation enhances the entrainment first
before later suppressing it. In order to check the relationship between rotation and
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Rotation speed (s−1) 0 2.714 16.646 19.381 35.172

Entrainment velocity flux (m2 s−1) at z = 1m 5.730 8.249 12.158 13.037 11.083

Entrainment velocity flux (m2 s−1) at z = 2m 5.400 8.748 11.612 11.416 9.731

Entrainment velocity flux (m2 s−1) at z = 3m 5.438 9.843 11.232 10.094 9.003

Table 4. The influence of the rotation speed on the entrainment velocity flux.

entrainment, we use our numerical results to calculate the entrainment velocity flux
(i.e. the sum of entrainment velocities along the perimeter of the enclosure) at z = 1 m,
z = 2 m and z =3 m for different rotation speeds, as listed in table 4. It is easy to
see that the entrainment is first enhanced and then suppressed as the rotation speed
increases.
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